Big data and its application

Image

Big data and its application

Big data is a field that treats ways to analyze, systematically extract information from, or otherwise deal with data sets that are too large or complex to be dealt with by traditional data-processing application software. Data with many fields (columns) offer greater statistical power, while data with higher complexity (more attributes or columns) may lead to a higher false discovery rate. Big data analysis challenges include capturing data, data storage, data analysis, search, sharing, transfer, visualization, querying, updating, information privacy, and data source. Big data was originally associated with three key concepts: volume, variety, and velocity. The analysis of big data presents challenges in sampling, and thus previously allowing for only observations and sampling. Therefore, big data often includes data with sizes that exceed the capacity of traditional software to process within an acceptable time and value.

Current usage of the term big data tends to refer to the use of predictive analytics, user behavior analytics, or certain other advanced data analytics methods that extract value from big data, and seldom to a particular size of data set. "There is little doubt that the quantities of data now available are indeed large, but that's not the most relevant characteristic of this new data ecosystem." Analysis of data sets can find new correlations to "spot business trends, prevent diseases, combat crime and so on". Scientists, business executives, medical practitioners, advertising and governments alike regularly meet difficulties with large data-sets in areas including Internet searches, fintech, healthcare analytics, geographic information systems, urban informatics, and business informatics. Scientists encounter limitations in e-Science work, including meteorology, genomics, connectomics, complex physics simulations, biology, and environmental research.

Applications

Government

The use and adoption of big data within governmental processes allows efficiencies in terms of cost, productivity, and innovation, but does not come without its flaws. Data analysis often requires multiple parts of government (central and local) to work in collaboration and create new and innovative processes to deliver the desired outcome. A common government organization that makes use of big data is the National Security Administration (NSA), who monitor the activities of the Internet constantly in search for potential patterns of suspicious or illegal activities their system may pick up.

best rolex replica

Education

A McKinsey Global Institute study found a shortage of 1.5 million highly trained data professionals and managers and a number of universities including University of Tennessee and UC Berkeley, have created masters programs to meet this demand. Private boot camps have also developed programs to meet that demand, including free programs like The Data Incubator or paid programs like General Assembly. In the specific field of marketing, one of the problems stressed by Wedel and Kannan is that marketing has several sub domains (e.g., advertising, promotions, product development, branding) that all use different types of data. Because one-size-fits-all analytical solutions are not desirable, business schools should prepare marketing managers to have wide knowledge on all the different techniques used in these subdomains to get a big picture and work effectively with analysts.

Insurance

Health insurance providers are collecting data on social "determinants of health" such as food and TV consumption, marital status, clothing size, and purchasing habits, from which they make predictions on health costs, in order to spot health issues in their clients. It is controversial whether these predictions are currently being used for pricing.